

Cereal Based Products For The Future

Prof Elke Arendt School of Food and Nutritional Sciences University College Cork

School of Food and Nutritional Science

Cereal Science and Advanced Miscropcopy

Malting and Brewing facilities

CEREAL AND BREWING SCIENCE AT THE UCC

- Prof. Elke K. Arendt
 - 4 Post Docs
 - 12 PhD students
 - 4 MSc students
 - 3 Researcher

CEREAL RESEARCH

- ✓ Gluten free cereal products
- ✓ Antimicrobial agents
- ✓ Reduction of calories in cereal products
- ✓ Sourdough starters and microbial metabolites
- ✓ Improving the nutritional quality of products
- ✓ Utilization of brewing by-products
- ✓ Rheology & ultrastructure
- ✓ Proteomics

BEVERAGE RESEARCH

- Starter culture development for malting and brewing
- ✓ Functional beverages
- Malting and brewing with alternative cereals

Coeliac Disease – Gluten free bread

Coeliac Disease

What is coeliac disease?

- Autoimmune disease
- Intolerance to gluten
- Changes to the lining of the upper part of intestine
- 4 Malabsorption

Symptoms: Infancy (0-2 years)

Diarrhoea, Abdominal distension, Failure to thrive, Anorexia and Psychomotor impairment

Childhood

Diarrhoea or constipation Anaemia Loss of appetite

Adulthood

Diarrhoea or constipation Anaemia Aphthous ulcers, sore tongue and mouth

Disease mechanism

- Epithelial cells renewed every 4 days
- Enzyme production for digestion
- Gluten triggers immunological response in small intestine
 destroys absorptive epithelial cells

Le t - Normal intestinal mucosa Right - Mucosa involved by celiac sprue

Possible causes

- Genetic predisposition
- Environmental factors
- Immunological based inflammation

CD is a multi-organ autoimmune disease caused by gluten intolerance

General

- pubertal & growth delay
- malignancies
- anemia

GI system

- diarrhea, vomiting
- distention, abdominal pain
- malnutrition, weight loss
- hepatitis, cholangitis

Bone

- osteoporosis, fractures
- arthritis
- dental anomalies

Epidemiology of coeliac disease

- 1 to 2 % of the world population suffers from celiac disease.
- Most common food intolerance

Iceberg model depicting prevalence of coeliac disease from Feighery (1999) Prevalence of coeliac disease based on clinical diagnosis or screening data (from Fasano and Catassi, 2001)

Geographic	Prevalence	Prevalence
area	on clinical	on
	diagnosis	screening data
Denmark	1:10,000	1:500
Finland	1:1000	1:130
Germany	1:2300	1:500
Italy	1:1000	1:184
Netherlands	1:4500	1:198
Norway	1:675	1:250
Sweden	1:330	1:190
United Kingdom	1:300	1:112
United States	1:10,000	1:111
Worldwide average	1:3345	1:266

Treatment - Gluten free diet 📈

Cereals Allowed: GF Cereals and Pseudocereals

Dryzoidae lice

Panicoideae zea mays Maize

Sorghum bicolor Sorghum

Eragrostis tef Teff

Eleusin coracana Finger millet

Pennisetum glaucum Perl Millet

Setaria Italica **Italien Millet**

Fagopyrum esculentum Buckwheat

Pseudocereals

Amaranthus Chenopodium cruentus quinoa Amaranth Quinoa

Consumers benefitting from a gluten free diet

- Coeliac Disease patients (1 to 2 % of the population)
- Gluten sensitivity
 - Wheat protein allergies
 - Autism

- Irritable Bowel Syndrome and Crones Disease
- Skin-disorders
 - Life style choice
 - Special diets
 - **Relations from above patients**

9 out of 10 consumers buying GF-foods are not Coeliac patients

What is Gluten ?

Function

- Water-binding helps starch gelatinisation during baking
- Visco-elastic properties gas retention during fermentation
- Gluten associated proteases bread flavour

Advances in the development of gluten free bread

Gluten free Market

- Free-from market: 300% growth since 2000
- US market for GF products: 1,6 billion \$ (2010) predicted to be 2,6 billion \$ (2012)
- Growth rate of 25% per year
- Only 1 out of 10 consumers buying GF-products are Coeliac patients

Marketing study UCC

100 bread products from 15 countries

1

Rustico

nbrötchen

kombrot

-				Carbohydrates		Fibre	Protein	Fat	Saturates
*	Brown Bread	Country	Kcal/100g	[g/100 g]	Sugars	[g/100g]	[g/100g]	[g/100g]	[g/100g]
	Meingast Krustenbroetchen	Austria	261	54.4	3.7	2.3	2.4	3.7	0.4
nen-	Minderleinsmuehle rolls	Austria	279	43.8	n.a.	n.a.	4.3	9.6	n.a.
ot	Minderleinsmuehle sunflower bread	Austria	311	43.3	n.a.	n.a.	6.4	12.5	n.a. 🔛
-	Tattarileipä Buckwheat bread	Finland	253	52.8	2.5	2.5	2.2	3.6	0.5
and a second	Tumma leipä Dark bread	Finland	260	56.5	5.5	2.6	2.4	2.6	0.4
and the second second	Hapan mausteleipä sourdough bread	Finland	262	54.2	3.1	2.7	2.6	3.8	0.5
	Pirjon Pakari Buckwheatbread	Finland	201	41.9	3.9	4.1	5.2	1.1	0.0
The	Schnitzer spezial Landbrot	Germany	192	36.6	2.0	4.4	6.5	2.2	0.3
	Schnitzer spezial Buchweizenbrot	Germany	214	30.1	2.8	5.8	9.4	6.2	0.8
	3 Pauly Schwarzbrot mit Teff	Germany	223	38.2	2.0	3.6	5.2	5.2	0.6
	3 Pauly Vollkorn Schnittbrot	Germany	196	38.0	1.0	5.0	6.0	2.0	0.3
S. A.	Schaer Landbrot	Germany	224	44.7	3.5	5.2	3.4	3.5	0.5
X	Schaer Ciabatta rustica	Germany	255	39.6	3.7	8.9	5.8	8.1	1.0
	Schaer Rustico	Germany	229	40.8	3.0	5.7	3.2	2.5	0.4
UD ALIEU	ener Bio Buchweizenbrot	Germany	214	30.1	2.8	5.8	9.4	6.2	0.8
	Hammermuehle Bio Landbrot	Germany	223	49.0	n.a.	n.a.	4.4	1.2	n.a.
	Kelkin Sliced Brown Bread	Ireland	223	47.8	2.6	1.3	2.0	3.8	1.1
	ENER G Gluten-Free Flax Loaf	Ireland	264	41.0	2.9	3.4	2.1	4.3	1.2
	Genius Gluten Free Brown Bread	Ireland	277	42.2	5.1	9.5	6.7	13.3	2.2
	Marks & Spencer 4 soft brown baps	Ireland	250	31.6	0.4	9.3	5.1	11.7	
and the second second	NUTRIFREE PanFette Integrale	Italy	283	60.0	2.4	5.6	2.3	3.8	

0.8

Nutritional Composition of GF Breads

	Gluten	free w	hite bread	Wheat bread
Calories	196 kcal		311 kcal	219 kcal
Fat	1.7 %		15.6 %	1.4 %
Protein	1.1 %		6.6 %	8.7 %
Carbohydrates	35.0 %		62.7 %	43.0 %
Fibre	0.1 %		8.3 %	2.8 %

A Bite of GF Bread-Marketing Study

- Dry, crumbly mouth feel and off-flavor
- Lack of Nutrients, high in fat
- Rapid staling (mostly starch based)
- Expensive

Evaluation of over 100 gluten free cereal products from 15 different countries

Characterisation of GF- cereals

Objective

To produce a gluten-free products, which is of comparable quality to wheat products

To produce a GF-products which takes the safety and nutritional requirements of Coeliac patients into account

Gluten free cereals -Characterisation

Gluten free cereals

Oryzoidae Rice

Panicoideae zea mays Maize

Sorghum bicolor Sorghum

Eragrostis tef Teff

Eleusin coracana Finger millet

Pennisetum glaucum Proso Millet

Avena sativa L. Oats

ste na hOllscoile Corcaigh. Éire

Fagopyrum esculentum Buckwheat

Amaranthus Chenopodium cruentus quinoa Amaranth Quinoa

Pseudocereals

Gluten free flours - Evaluation

Potential nutritional deficiencies

On diagnosis	On GF diet	On long-term GF diet
Protein/calorie		
Fibre	Fibre	Fibre
Fe, Zn, Cu, Mn	Fe, Zn	
Vit D, Vit K	Vit D	
Ca, Mg	Ca, Mg	
Folate, B ₁₂	Folate, B ₁₂	Folate, B ₁₂
Thiamin		
Niacin	Niacin	Niacin
Pyridoxine		Pyridoxine
Riboflavin	Riboflavin	
Se, Carnitine		

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

Protein content g/100g

Mineral characterisation

	Wheat	Wholewheat	Rice	Oat	Quinoa	Buckwheat	Sorghum	Maize	Teff
Ash [§]	0.92	1.32	0.51	0.82	2.43	1.65	0.97	0.37	2.15
Calcium*	179.80	30.80	5.10	22.50	49.80	14.80	9.80	3.30	154.30
Iron*						11.00).91	8.53
Sodium*		Cal	cium	conte	ent mg	/100g		0.50	6.00
Potassium*	200.00							48.70	382.80
Copper*	160.00							0.09	0.93
Manganese*	140.00).15	3.45
Zinc*	100.00							0.66	4.15
Chloride*	80.00 60.00							8.40	48.10
Phosphorus*	40.00							1.40	361.70
§ g/100g	20.00		_						
* mg/100g		west west	Rice	0 ³	or rest	num sai	e ret		
		Mr. Holem.	•	On	BUCKM	SOLD WIT	-		
		24,			v				
		2.			v				UCC

University College Cork, Ireland

Folate levels µg/100g

Dietary fibre content

	Total fibre*	Insoluble fibre*	Soluble fibre*	Total starch*	
Wheat	3.44 ± 0.01	Tota	l dietary fibr	e content g	/100g
Wholewheat	11.42 ± 1.27	14			
Rice	0.43 ± 0.15	12			
Oat	4.05 ± 0.40				
Quinoa	7.14 ± 0.23	6			
Buckwheat	2.18 ± 0.11	4	I		
Sorghum	4.51 ± 0.01	0	_		
Maize	2.62 ± 0.45	wheat wheat	Rice Oat wi	nos wheat rehum	Maile reft
Teff	4.54 ± 0.57	whole	0	BUCK SOL	
* g/100g					

Resulting loaves

Laser scanning microscopy

40 x magnification

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

SEM micrographs (1500/2000x) of wheat flour (a); dough (b), and bread (c).

SEM micrographs (2200/2300x) of quinoa flour (a), dough (b) and bread (c)

iiste na hOllscoile Corcaigh. Éire

SEM micrographs (1500/1000x) of maize flour (a), dough (b), and bread (c)

Gluten Free Bread -The New Generation

Objective

To produce a gluten-free products, which is of comparable quality to wheat products

To produce a GF-products which takes the safety and nutritional requirements of Coeliac patients into account

New Generation of Gluten free bread

New Generation of Gluten free bread

NG- Gluten free bread: specfic volume **3,5 ml/g** comparable to wheat and higher than most GF on the market

NG-Gluten-free bread is softer and has a lower staling rate than wheat bread – stays fresh for longer

Sensory evaluation

Comparison of new generation GF- bread with GF-Market leaders from different EU-countries (Panel 70 non celiacs and 35 celiacs)

65 % of both panels preferred UCC GF Bread

Comparison of Wheat bread and New Generation GF-bread (Panel of 70 non celiacs)

Panel could not distinguish between UCC GF and Wheat bread

Compositional analysis

Nutritional Information Typical values per 100g of dry product	THE BEAM AND THE STATE	Geniss Geniss Baa	BE Wheat & Gluten Free ®	Range based on market study
Energy	219 kcal	296 kcal	204 kcal	196 – 311 Kcal
Protein	8.7g	8.4g	6.6 g	1.1 - 8.4 g
Carbohydrates Of which sugar	43g 2.42g	41.1g 3.0g	34.2 g 1.13 g	35.0 - 62.7
Fat Of which saturates	1.4g 0.4g	13.0g 0.9g	2.8 g	1,7 -15,6
Fibre	2.8g	9.7g	8.0 g	0,1 - 8.3
Sodium	0. 45 g	0.63g	0.62 g	

New Generation Gluten -free bread

Be Wheat & Gluten Free \propto

- Lower in calories
- High in Fibre (highest in fibre, 9.5 %)
- Wheat free (no wheat starch used in the product)
- Lactose free
- Protein of high biological value (6.6 %)
- Low in fat (<3%)</p>
- Flavour and texture comparable to wheat bread
- Preferred over the GF-bread market leaders
- Long shelf-life (stays fresh for longer)
- Visually appealing (specific volume 3.5 g/ml)
- **4** Range of products such as baguettes, roles etc.

It is possible to produce a Gluten free bread comparable to wheat bread

Gluten free malt and beer

Strategies for making gluten-free beer

Solution Appropriate the elimination of the relevant protein and protein degradation products from traditional raw materials

Seek alternative cereals and cereal-like materials from which to produce the beer

Solution Provide the series of the series of

Understanding protein changes during malting & brewing

Example: Hordein changes during malting

> Hordeins: nearly complete breakdown during malting

Malting Process

Limited germination of cereals or pseudocereals under controlled conditions

initiate metabolic processes by soaking the kernels with water degradation & assembly of macromolecules (enzymatic systems are activated or will be *de novo* synthesised) gentle drying of the grain to stop germination and make the malt storable as well as formation of desired substances

Malting and brewing with Non traditional Cereals

Oryzoidae Rice

Panicoideae zea mays Maize

Sorghum bicolor Sorghum

Eragrostis tef Teff

Eleusin coracana Finger millet

Pennisetum glaucum Proso Millet

Avena sativa L. Oats

Fagopyrum esculentum Buckwheat

um Amaranthus um cruentus eat Amaranth

Chenopodium quinoa Quinoa

Malt Applications

Usage of malt in the beverage industry Beer Spirits Production of alternative drinks – Bionade, Karamalz Coffee substitutes and hot drinks

Malt vinegar

Foodindustry

- Breakfast cereals
- Cereal bars
- Baking enzyme additive and flavouring ingredie
- Pre-digested foods for special dietary needs
- Fermented gruels, porridges (Africa)

Malting of nontraditional cereals

Characterisation of raw-material

Composition analysis, bioactive compounds, ultra-structure Proteomics – buckwheat, sorghum, oats, prosomillet

Optimisation of malting conditions

RSM based designs: Optimisation steeping, germination, kilning

Understanding processing changes

Ultra-structure:Laser scanning microscopy, electron-microscopy,Proteins:Capillary electrophoresis, Size Exclusion-HPLC, 2D gel
electrophoresis

Starch: RVA, Fundamental rheology, DSC

Bio-acitive compounds: poly-phenols, anti-oxidants, vitamins, minerals, mineral bio-availability, dietary fibre

Good quality gluten free malt

Ingredient for: beer, cereal products and functional drinks

Malting regimes

Optimisation of the malting regimes

Rawmaterial	Barley	Sorghum	Buckwheat	Oats
Steeping	36 h	24 h	10 h	16 h
	13-18 °C	20-25 °C	10 °C	16 °C
Germination	5-7 d	5 d	4 d	6 d
	13-18 °C	20-25 °C	15 °C	16 °C
Drying		24 h 50 °C	5 h, 40 °C 3h, 50 °C 3h, 60 °C	22 h 49-85 °C

Ultra-strucute (SEM)

Analyse of raw material

Ultra-Structure Laser-Scanning-Microscopie (CLSM)

Brewing with alternative cereals

Brewing Process

Brewing with Alternative cereals

Mashing

RSM-mash parameters, enzyme optimisation, proteomics, bio-acitive compounds

Lautering

Optimization of husk, evaluation of alternatives

Wort boiling

Optimization of hop addition, Optimization of the wort boiling

Fermentation

Optimization of yeast type Removal of (Off-)flavor, fermentation time and temperature

Gluten free beer

Flavor profile, sensory evaluation, protein characteristics, foam shelf-life

Processability of Buckwheat during brewing

Mashing

Increased Viscosity	Enzymes
β-Amylaseactivity	Amyloglucosidase
α-Amylaseactivity	heast stable bacterial α -Amylasen
Extrakt	Enzymes, intensives mashing
FAN	intensives mashing

Lautering

Use of rice husk And

Enzymen

Quality of gluten free beer – Example buckwheat

	Buckwheat beer	German wheat beer
Ethylacetat [mg/l]	32	29
2-Methylpropanol [%]	53	40
3-Methylbutanol	55	61
3-Methylbutylacetat	4	3,6
2-Methylbutylacetate	0,4	0,25

Buckwheat beer has a similar flavour than wheat beer

Conclusion – Brewing with Gluten free cereals

- It is possible to produce GF malt
- Malting conditions are different to barley based malt
- GF malt is not comparable to barley based malt
- It is possible to produce good quality GF beer from GF cereals
- Enzyme addition is essential for the production of GF Beer
- Production process has to be adapted to the cereal

Glass of oats malt beer

Acknowledgements

Cork Institute of Technology

Dr Aidan Coffey Dr Ambrose Fury

University of Alberta, Canada Prof Michael Ganzle

NATIONAL DEVELOPMENT PLAN

Funded by the European Union

University College Cork Dr Sophie Hager Dr. Emanuele Zannini Dr Sandra Galle Dr Alice Moroni Dr Anika Wolter Dr Deobrah Water Claudia Axel Stefan Hartmann

Further Reading

WOODHEAD PUBLISHING SERIES IN POOD SCIENCE, TECHNOLOGY AND NUTRITION

Cereal grains for the food and beverage industries

Elke K. Arendt and Emanuele Zannini

WP

School of Food and Nutritional Sciences, University College Cork, Ireland

